
das-FaceQR - Biometric Credential Service

Release 2021Q2 (v2.5.4)

API Specification v2

Release Date Description Author Reviewer Approver

1.4 20/6/2021 das-Face QR release
2021Q2 (v2.5.4)

ISL MSY GSS

CONFIDENCIAL

1. Introduction 4

2. dasFace QR 2021Q2 What’s new 5
2.2. Changed 5

3. dasFace QR main features 5
3.1. Security 6

3.1.1. High performance biometric engine 6
3.1.2. Encryption of the biometric information and digital signature 6
3.1.3. Value-less authentication 7
3.1.4. Double factor authentication 7

3.2. Privacy 8
3.3. Output formats 8
3.4. Selfie image formats 9

4. Operation details 9
4.1. Creation of the Biometric Credential 9
4.2. Biometric Authentication 10

5. API Considerations 11

6. API Definition 12
6.1. Check if the service is alive 13
6.2. Get the available biometric models 14
6.3. Generate a QR code 14
6.4. Verify a QR code, with similarity comparison 20
6.5. Obtain the certificate to verify a QR code’s signature 23
6.6. Generate a standard QR code 23
6.7. Verify a standard QR code 24

7. API Errors 25

Annex A: Supported QR versions and maximum contextual data lengths 27

Annex B. Use case example: Authentication for accessing a concert 32
Tickets sale 32
Access to the concert 33
FAQs 34

Annex C: Changelog History 36
dasFaceQR 2021Q1 36
2.1. Added and improved 36
dasFaceQR 2020Q4 36

2
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

2.1. Added 36
2.2. Fixed 36
dasFaceQR 2020Q2 36
2.1. Added 36
2.2. Fixed 37
2.3. Deprecated 37
dasFaceQR 2019Q4 37
2.1. Added 37

3
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

1. Introduction

The objective of this document is to introduce the das-FaceQR service, focusing on its characteristics,

usage modes and its relation with other Veridas products and applications.

The process described herein is protected by a patent.

das-FaceQR is a service which allows the authentication of a person via face biometry. This service is

provided as a cloud-based or SaaS solution that can be consumed via APIs. Unlike das-Face -another

Veridas’ face biometry service which, among others, allows to compare face images-, the process of

biometric verification is performed as a comparison between a face image and an abstract

representation of the face of the person stored in a biometric credential.

The face biometric credential is a mathematical descriptor obtained from the characteristics of

the face in a face photo. This mathematical conversion from the face into a biometric vector is

irreversible. Therefore, it is not possible to recover a person's face from the calculated biometric

vector.

All the information needed to verify the identity of the bearer of the credential is contained in the

credential itself. Veridas does not keep any information either when generating a credential or

verifying it against the bearer’s face. These credentials are secure, as it is not possible for adversaries

to modify their content without such modification being later undetectable.

A credential could be bundled in a QR code rendered in an image, or in a Passbook file. The latter is

readable by many of the wallet applications available in the market for almost any mobile operating

system. A screenshot of a Passbook file generated with dasFaceQR is shown below.

Section 5.3 outlines all the parameters that can be used to tweak the captions and the contents that

will be shown in the wallet.

4
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

2. dasFace QR 2021Q2 What’s new

2.2. Changed

● Aztec Codes can now be generated without base85 encoding and without custom headers

which made that can be readed by any conventional Aztec code reader

3. dasFace QR main features

This section presents the technical features and differentials of das-FaceQR. These differentials are

mainly based on the concepts of security and privacy.

5
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

3.1. Security

The security of the das-FaceQR service is based on 4 principles.

1. High performance biometric engine.

2. Encryption of biometric information.

3. Valueless authentication.

4. Use of double factor authentication.

3.1.1. High performance biometric engine

dasFaceQR leverages a top-notch high-performance biometric engine to generate the biometric

information associated with a person. This engine has been developed by Veridas from scratch using

the latest Artificial Intelligence technology, and was ranked as the third best biometric engine in the

world by NIST on April 4, 2019.

3.1.2. Encryption of the biometric information and digital signature

The biometric QR generation process allows obtaining an encrypted mathematical representation

of a person's face as a string of bytes. This means that anyone managing to read one these

credentials will not be able to obtain any personally-identifiable information out of it.

6
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

It is not possible to retrieve a person's face image from the biometric vector. In other words, the

mathematical operation that transforms a face into a biometric vector is irreversible (assimilable

to a “hash”).

The encryption of the biometric vector resulting in the biometric credential provides an additional

layer of security. To do this, a 32-byte key is used. Currently, the encryption process uses a unique

key, known exclusively to Veridas.

Why is the biometric vector encrypted if the vector itself is an irreversible byte string?

Additionally, multi-tenant encryption is necessary to prevent the customers (with access to the

on-premises instance of das-FaceQR) from using the biometric QRs of other customers. Currently,

Client A can take a biometric QR generated by Client B and perform a biometric validation process

if they have an on-premises instance of das-FaceQR. In any case, Client A and Client B can not

access the user's biometric information.

3.1.3. Value-less authentication

das-FaceQR introduces the concept of “valueless authentication” or value-less authentication. This

concept refers to the null importance of the loss of the biometric QR.

● No one -a person or an automatic system-, even Veridas, can recover the user's facial image.

● Only the Veridas software can retrieve the biometric vector

● From the customer's point of view, the loss of the biometric QR does not expose any

personal data of its users (except in the case that they are added as part of the contextual

data

3.1.4. Double factor authentication

Currently there are different authentication mechanisms in applications. In general, they use at least

one of the following elements.

● Something the user knows: It is the usual case of authentication by email and password. In

this scenario, the application stores these two data, where the password is known -ideally-

exclusively by the user. In this situation, the application has access to user information, for

example the email, which does not have to be necessary for the consumption of the service

offered by the application.

● Something that you are: It is the usual case of biometric authentication (facial, fingerprint,

etc.). In this scenario, the application stores the registration biometric information, in the

7
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

form of an image, biometric vector, or other. As in the previous case, the application has

access to user information, for example the image of the face, which does not have to be

necessary for the consumption of the service offered by the application.

● Something you have: Usually used as a complement to the previous two, with the aim of

reinforcing security.

das-FaceQR is based on the use of two factors combined.

● Something that you are, through the use of facial biometrics.

● Something you have, by storing the biometric credential by the user in physical or digital

format.

The validation through the das-FaceQR service implies that the user is who he claims to be while

presenting something he has.

Likewise, if das-FaceQR is used in the context of digital payment services, the legal requirements

established by the European PSD2 regulations could be met for considering that a “stronger

authentication” has taken place. The element of inherence (something you are) is fulfilled by the

biometric verification. This can be completed and converted in a reinforced authentication by taking

the biometric credential held by the user as a token for the purposes of compliance with the element

of possession (something you have).

3.2. Privacy

The main feature and differential element of das-FaceQR is that it offers the possibility of

implementing an authentication system in which the application that the user uses to

authenticate, does not have to store any personal (or biometric) data of the user.

Unlike the previously explained authentication mechanisms, the registration information can be

guarded (stored) by the user, not by the application. As the biometric credential has no value itself, it

can be stored by the user without limitation and risk free, allowing a qualitative leap in terms of the

privacy of the user data.

3.3. Output formats

8
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

The code containing the biometric credential can be exported in several formats. For instance, it

could be an image containing the QR or Aztec code, or a Passbook file readable with any of the

widely available wallet applications.

3.4. Selfie image formats

Admitted formats for the selfie images are JPEG, PNG and TIFF.

4. Operation details

This section describes the logic and details which happen behind the different das-FaceQR features

which are offered to be consumed as an API.

4.1. Creation of the Biometric Credential

From a facial image, das-FaceQR returns an abstract representation of the face in a QR format. This

is called biometric credential. The process of biometric credential generation is the following.

1. Some data is sent to the das-FaceQR credential generation endpoint. This data will typically

be a picture with a face, and some arbitrary data referred to as “contextual data”, though

both are optional.

2. Behind the scenes, das-FaceQR calls das-Face (the Veridas’ face biometric engine offered as

an API) which returns a biometric vector. Currently, the size of the vector is 1872 bits, to save

as much space as possible.

3. Additionally, das-Face adds useful information of the biometric generation process. This

information includes a timestamp and a hash with the version of the biometric engine which

generated the vector.

4. das-Face carries an encryption process with this information, producing a biometric

credential. This credential has a size of 1872 bits. Optionally, das-FaceQR admits that the

customer includes additional information related to the use case. This information is known

as contextual data.

5. das-FaceQR signs the biometric credential and the contextual data.

6. das-FaceQR incorporates the previous information in a compact representation of the

information, based on the QR standard. This is known as a biometric QR.

7. The credential is returned as an image with a QR code, or a Passbook file, as chosen by the

caller.

9
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

4.2. Biometric Authentication

By using a face image and a biometric credential, the biometric authentication process is carried on,

obtaining as a response a face similarity value and the contextual data that were introduced in the

biometric credential during its generation.

1. The returned QR code is read out-of-band later by standard QR scanning hardware, which is

widely available elsewhere. The raw data read from the QR code is submitted to the

credential verification endpoint, together with a selfie image.

2. First of all, das-FaceQR validates the integrity of the data set stored in the biometric QR, by

using for that the signature introduced in the generation process. If the biometric QR

integrity can not be guaranteed, das-FaceQR returns an API error.

3. If the biometric QR integrity can be granted, das-FaceQR obtains the biometric credential

and decrypts it, obtaining the biometric vector.

4. das-FaceQR calls to the Veridas’ biometric engine (das-Face) to biometrically compare the

face image that was introduced and the decrypted biometric vector. A similarity between

both face representations is obtained. The similarity value is a float number with a value

ranging from 0 and 1. As greater the number, greater the probability of the two

representations to belong to the same person.

5. Finally, das-FaceQR obtains the contextual data stored in the QR and returns them through

the API alongside the face similarity value previously calculated. The similarity score tells

how likely it is that the submitted selfie is of the same person as the one that was used to

10
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

generate the QR. If no biometric data was found in the credential (because no selfie was

used to generate the QR) then the similarity score will be zero.

The face images used in the creation and in the biometric authentication must have at least 100

pixels of distance between the eyes of the face of the image person. It is recommended to use the

Veridas capture SDKs available for iOS, Android and HTML platforms.

An specific use case example is included in the Annex B of the current document.

5. API Considerations

This service exposes an API with the following features.

Requests must meet the following requirements:

● Content type must be either multipart/form-data, or application/json.

● The API can only be accessed via TLS. Always validate server certificates and never trust a

VeriSaaS endpoint that offers an invalid certificate.

The documentation for all the endpoints that require a POST method has been written assuming a

multipart/form-data MIME type. However JSON is equally accepted for all such endpoints and the

behavior should be the same.

11
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

The following differences should be taken into account when consuming an API with a JSON body:

● Content type must be set to application/json. Otherwise the API will assume a multipart

body.

● All the parameters that have been marked as body parameters in the endpoints’ descriptions

(location: body) can be sent in the JSON body. For example, in the /credential/qr-code

endpoint, the parameters selfieImage and contextualData are marked as such. Hence, these

parameters can also appear in the JSON object.

● Query string parameters will continue to be so regardless of the body format.

● Mandatory parameters (marked as ‘required’) will continue to be so regardless of the body

format.

● All JSON values MUST be encoded in base64, whereas multipart bodies need not, except

where explicitly stated. This is a relevant detail when sending binary data.

Some endpoints require a biometric model to be specified. These endpoints have been conveniently

marked with the placeholder {model}, as this parameter is passed in the path.

Example:

/dasfaceqr/v2/3a9e9d5ffd5de4c212c2aff26eeca523fb69754e604894520b32e4ed/credential/qr-code

Models can be specified either by their hash (as in the example above) or by a tag. An example of a

model tag is given below.

/dasfaceqr/v2/20190813/credential/qr-code

Available models can be obtained with the GET /models endpoint.

6. API Definition

Public Base URL:
https://<base_url>/dasfaceqr/v2

Resources:

Method Public URL Description

GET /alive Check if the service is up. Should reply
with a 204 No Content status code.

GET /models Get the available models and their
identifiers.

POST {model}/credential/qr-code Generate a QR or Aztec code with the

12
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

{model}/credential/aztec-code
{model}/credential/qr-code/algorithm
/{algo name}
{model}/credential/aztec-code/algorit
hm/{algo name}

supplied selfie image and/or contextual
data.

POST {model}/credential/qr-code/passbook
/event
{model}/credential/aztec-code/passb
ook/event

Generate a Passbook file suitable for
opening in wallet applications. Will
contain a QR or Aztec code with the
supplied selfie image and optional
contextual data.

POST /verification/credential/qr-code
/verification/credential/aztec-code

Compare an image with the biometric
vector contained in a QR or Aztec code.

GET /certificate/{algorithm} Obtain the certificate to verify the
generated signatures. May be followed
by an algorithm identifier.

POST /qr-code/unsigned
/aztec-code/unsigned
{model}/qr-code/unsigned
{model}/aztec-code/unsigned
/qr-code/algorithm/{algo name}
/aztec-code/algorithm/{algo name}
{model}/qr-code/algorithm/{algo
name}
{model}/aztec-code/algorithm/{algo
name}

Generate a QR or Aztec code with a
standard format. This means that the
provided data (selfie and/or contextual
data) will be introduced in the QR as
“Raw data” (without any additional
bytes).

POST /verification/qr-code
/verification/aztec-code
/verification/qr-code/unsigned
/verification/aztec-code/unsigned

Extract the content of the QR or Aztec
code. If a selfie is provided, it will
compare it with the biometric vector
extracted from the QR or Aztec code.
Otherwise, the content of the QR or
Aztec code will be returned as pure
contextual data.

6.1. Check if the service is alive

GET /alive

Response: HTTP status 204 No Content.

Check if the service is up.

13
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

6.2. Get the available biometric models

GET /models

Response: HTTP status 200 OK

Get a list of the supported biometric models. The list is a JSON object where each item identifies a

model. Each item, in turn, will have two keys: a hash and a tag. Either of these can be used in the

{model} placeholder for the API endpoints that require it. An example is provided below.

[
{
"tag": "20200514",
"hash": "904fa9ef6e71ef541f20a95d3dc97821b7af43b8cd2c1bb3eb09df15"
},
{
"tag": "20190813",
"hash": "3a9e9d5ffd5de4c212c2aff26eeca523fb69754e604894520b32e4ed"
},
{
"tag": "20180827",
"hash": "b0bf475e5344e816f12b83c13c075a3256ef95e60ac1cdc273aef59f"
}

]

6.3. Generate a QR code

POST /{model}/credential/qr-code

POST /{model}/credential/qr-code/algorithm/{algo name}

POST /{model}/credential/qr-code/passbook/event

POST /{model}/credential/qr-code/passbook/event/algorithm/{algo name}

POST /{model}/credential/qr-code/unsigned

POST /{model}/credential/aztec-code

POST /{model}/credential/aztec-code/algorithm/{algo name}

POST /{model}/credential/aztec-code/passbook/event

POST /{model}/credential/aztec-code/passbook/event/algorithm/{algo name}

POST /{model}/credential/aztec-code/unsigned

Response: HTTP status 200 OK, and an image or Apple Passbook file (application/vnd.apple.pkpass).

Generate a QR or Aztec code with the supplied selfie image and contextual data. Both are optional,
but at least one of them MUST be provided. Either selfie image only, or contextual data only, or both.

14
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

The last variant (with the ‘unsigned’ suffix) generates unsigned credentials. Do not use this variant
unless you are absolutely sure of what you are doing, as it is very easy for a malicious user to forge
unsigned credentials.

This endpoint requires a model only if a selfie image is provided, since a biometric engine is needed
to convert the selfie image to a biometric vector. The model identifies the specific biometric engine
to use. If no selfie image is provided (contextual data only) then the {model} placeholder MUST be
omitted. If a model is specified but no selfie image provided, a 400 error will be returned.

Returns a QR code image or an Apple Passbook file. At the time being, only event type Passbooks are

supported.

It is not currently possible to request an Apple Passbook file with the Accept header only. Passbook

files can be generated by appending /passbook/event to the path.

The data in the QR is composed of the biometric vector, the contextual data and a digital signature.

But as has been noted above, the signature and the biometric vector can be omitted if desired. In

that case, the QR will just contain the contextual data, and a small header consisting of two control

bytes. The public key for verifying it can be obtained with the /certificate endpoint.

It is however possible to prepend an arbitrary string of data to the “normal” content of the QR code.

This data needs to be passed in the prefixData parameter. This data will be put verbatim in the first

bytes of the QR data, and will NOT form part of the signed data. This means anyone that gets hold of

the QR code can freely modify this part without dasFace QR being able to detect later on at the

verification phase.

The default signature algorithm that will be used to sign the QR code is ISO/IEC 9796-2, also known

as “RSA with message recovery”. This is the algorithm that will be applied if no specific algorithm is

specified. An algorithm can be explicitly selected by appending /algorithm/{algo name} to the

qr-code or aztec-code endpoint. The following table lists the supported algorithms. The {algo name}

placeholder would need to be replaced by one of the names in the first column.

Algorithm identifier Description

iso9796-2-2010 or
just iso9796-2

ISO/IEC 9796-2 algorithm (2010 revision), also known as RSA with
message recovery. This generates the smallest signatures and is the
algorithm used by default. Though the other algorithms are a bit
more secure.

ed25519 ed25519 algorithm, which generates 64-byte signatures. These are
the smallest ones available with an acceptable security level.

ed448 ed448 algorithm. This is a high-security algorithm that generates
slightly bigger signatures.

15
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

https://developer.apple.com/library/archive/documentation/UserExperience/Reference/PassKit_Bundle/Chapters/TopLevel.html#//apple_ref/doc/uid/TP40012026-CH2-SW6

CONFIDENCIAL

It is possible to specify the QR code version and error correction level. Please take into account that

different versions have different size constraints. The limits explained in the above paragraph apply

to version 28 and error correction M, which are the default values. Accepted versions range from 12

to 32 (both included). An endpoint is provided that allows querying these size limits (see section 1.4).

Annex A lists all the supported QR versions and the maximum number of bits of contextual data that

can be put into them.

Sending binary contextual data

Binary contextual data is supported, but it MUST be sent as if it was a file (with a filename attribute
and a multipart/form-data MIME type). The value of the filename attribute is irrelevant, but the
parameter itself must exist. Otherwise the data will be taken as printable and that will cause 400
errors because of the wrong encoding of binary data.

Content of Apple Passbook files
In addition to the QR code with the biometric vector and contextual information, Passbooks also
contain some additional information for the user. This information is displayed on the device’s screen
when the Passbook is read, and is organized in a number of fields. This information is not stored in
the QR code.

Standard parameters

The following parameters are accepted, for both endpoints.

Parameter name Location Description

selfieImage Body A picture with a selfie. Refer to section 3.4
to see a list of admitted formats.

contextualData Body Some optional contextual information.
Binary data is allowed but there are some
constraints (see section “Sending binary
contextual data”).

model Path Identifier of the model that will be used to
extract the face features and generate the
biometric vector. If a selfieImage was
provided, then a model MUST also be
provided.

prefixData Body An arbitrary string of bytes that will be put
just before the dasFaceQR-generated
content in the QR code. This data will not
be signed.

Parameters for wallet Passbook files

16
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

The following parameters can be passed to the Passbook file generation endpoint

(/passbook/event). Each of these parameters controls one aspect of the Passbook’s visual

appearance. Two screenshots are also shown, taken on an Android device, displaying a sample

Passbook file’s front and back. Each visual item (event name, date, etc.) is labeled with a number, and

referenced in the parameter that controls it.

Parameter name Required Location Description

latitude yes Body Latitude of the coordinates where the
event will be taking place.

longitude yes Body Longitude of the coordinates.

title no Body Most Passbook readers will also show
this as a simplified description of the
Passbook on a list of items. Item labeled
4 shows the title.

subtitle no Body Most Passbook readers will also show
this (together with the title) as a
simplified description of the Passbook
on a list of items. Item labeled 5 shows
the subtitle.

eventName no Body The name of the event or place. This
should be a short phrase, as it will be
prominently displayed at the top. Item
labeled 1 shows the event name.

personName no Body Name of the individual. Ideally this
should be the person whose biometric
credential has been put in the enclosed
QR code (parameter selfieImage).

address no Body Address where the event will be taking
place. Will be shown as a secondary
field. Item labeled 8 shows the address.

description no Body A text describing the event. Will be
shown as a secondary field. Item
labeled 9 shows the description.

termsAndConditions no Body A terms-and-conditions text. Will be
shown as a back field. Item labeled 10
shows the terms and conditions.

date no Body Date (and optionally, time), at which
the event will be taking place, in

17
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

standard ISO format (i.e. YYYY-mm-dd
HH:MM:ss). The time part can be
skipped, as well as the seconds. The
date will and displayed in a
human-readable format, and localized
(i.e. in the user’s language). Item
labeled 2 shows the date.

logo and logox2 no Body An image that will be displayed on the
front of the Passbook in the top left
corner. The field logox2 should have the
same image that has been put in the
logo (though this is not enforced), but
in a bigger size. Item labeled 7 shows
the logo.

icon and iconx2 no Body An image that will be displayed in
notifications related to this Passbook
that the device (i.e. a phone) might pop
up to the user. The relationship of
iconx2 with regards to icon is the same
as with logo and logox2 - it should
contain the same image in a bigger size.

thumbnail no Body An additional image displayed on the
front of the Passbook. For example, this
could be a picture of the cardholder.
Item labeled 6 shows the thumbnail.

labelColor no Body Color of the text for the labels’
captions, in HEX format (e.g. #ffaabb).
Default is dark blue (#2d3581).

foregroundColor no Body Color of the rest of the text, in HEX
format. The default is black.

backgroundColor no Body Background color, in HEX format. The
default is white.

18
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

Front Back

Optional parameters for image QR

The following optional parameters can be passed to the QR generation endpoint (image format).

Parameter name Location Description

qrVersion Query QR version to generate. Accepted
versions are from 12 to 32 (both
included). Default version will be 28.

qrErrorCorrection Query Error correction level to use, as
specified by the QR standard. Accepted
values are L, M, Q and H. Default error
correction is M.

boxSize Query Controls how many pixels each box of

19
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

the QR code is. The default value (if
omitted) is 12. Allowed values are 4, 12
and 24.

binary Query QR format. The default value is ‘false’,
which means that the endpoint will
return the QR as an image. If ‘true’ is
given, the endpoint will return the
content of the QR as raw bytes.

Responses

Status code Description

200 OK Success. An image or Passbook file should be expected in the
response body.

413 Request Entity Too Large Submitted selfie image and/or contextual data are too large.

400 Bad Request A mandatory parameter was omitted, or some invalid value was
supplied. The body should contain a JSON with extended
information about the error.

Example responses:

{
"code": "FormatError",
"message": "SubjectPublicKeyInfo does not match public key in X.509 certificate"

}

6.4. Verify a QR code, with similarity comparison

POST /verification/credential/qr-code

POST /verification/credential/qr-code/unsigned

POST /verification/credential/aztec-code

POST /verification/credential/aztec-code/unsigned

Response: 200 OK, and a JSON (application/json) in the body.

Compare an image with the biometric vector contained in a QR or Aztec code.

There are separate endpoints to verify QR codes and Aztec codes. This is so because, even though
they look quite similar, their structure, character set and encoding are very different. This will be

20
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

consistent with virtually all client setups, as the reader will always know whether it’s reading a QR
code or an Aztec code. However, once the payload has been read, DasFaceQR cannot reliably guess
whether it comes from QR or Aztec.

This endpoint takes the data read from a QR code and a selfie image, and compares the selfie image

with the biometric credential contained in the QR. It returns a confidence score (how likely it is both

selfies are of the same person) and the contextual data contained in the QR code, if any. The

contextual data is always returned encoded in base64.

If no biometric credential is present in the QR/Aztec code, then the provided selfie image will be

ignored (you may even not provide any), and the confidence score will always be zero.

In the case a biometric credential is found in the credential but no selfie image was provided for

comparison, a 400 Bad Request error code will be returned.

If some data was prepended to the credential when it was generated (using the prefixData

parameter, see endpoint /credential/qr-code) then this data needs to be removed by the caller

BEFORE calling this endpoint. Not doing so will cause the signature verification to fail. dasFaceQR will

not attempt to “detect” the presence of caller-introduced prefix data in any way.

Unsigned credentials need to be verified with the second endpoint (the one with the ‘unsigned’

suffix). Other than the fact that it can verify unsigned credentials, its behavior is identical to the first

endpoint. Trying to verify a signed credential with this endpoint will result in an error, as signed and

unsigned credentials have differing formats.

A note on reading QR codes

The QR codes generated by dasFace QR contain binary information. The main reason for this is to

save space.

Some libraries try to convert binary data to printable strings automatically, unless overridden by the

caller, sometimes in a non intuitive way. We have observed this behavior in the ZXing library for

JavaScript, for instance. Please bear this in mind when reading one of these QR codes.

For example, if you use JavaScript’s ZXing library, you need to access the resultMetadata field to

obtain the raw binary data contained in the QR code.

const bytes = qrdata[‘resultMetadata’];

Parameters

The following parameters are accepted.

Parameter name Required Location Description

21
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

selfieImage no Body A picture with a selfie. The maximum
admitted size for the image is 2 MB. Refer
to section 3.4 to see a list of admitted
formats.

qrData yes Body Data read from a QR code,
base64-encoded.

QR codes contain binary data that must
be encoded in base64. Bear in mind that
some libraries might make it hard to treat
binary data, as explained in the section
above “A note on reading QR codes”.

Responses

Status code Description

200 OK Success. A JSON object should be expected in the response body.
This JSON object contains the following fields:

● confidenceNumber: A score between 0 and 1. A higher
value means there is a higher probability that the person
in the selfie image is the same as the person of the read
biometric credential (QR code).

● contextualData: Contextual data taken verbatim from the
QR data, which was supplied in the previous endpoint
/credential/qr-code. This information is always returned
base64-encoded.

Example response:
{

"confidenceNumber": 0.018946728477870274,
"contextualData":

"IGZhc2RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGR
kZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZG
RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZ
GRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRk
ZGRkZGRkZGRkZA=="
}

415 Unsupported Media
Type

The supplied credential is invalid.

400 Bad Request A mandatory parameter was omitted, or some invalid value was
supplied. The body should contain a JSON with extended
information about the error. This error is also returned when the
signature of the supplied QR data could not be verified.

22
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

Example responses:

{
"code": "InvalidInputError",
"message": "Parameter 'selfieImage' was not supplied"

}

{
"code": "FormatError",
"message": "SubjectPublicKeyInfo does not match public key in X.509 certificate"

}

6.5. Obtain the certificate to verify a QR code’s signature

GET /certificate/{algorithm}

Response: HTTP status 200 OK.

Obtain the certificate to verify the generated signatures, for the given signature algorithm.

This endpoint returns the certificate (in PEM format) with the public key that can be used to verify
the signatures of the QR codes generated by dasFace QR.

The algorithm placeholder needs to be replaced with the name of a supported algorithm. These are
listed in the table at section 4.3.

If omitted, the certificate for the default algorithm (ISO/IEC 9796-2) will be returned.

Parameters

This endpoint takes no parameters.

Responses

Status code Description

200 OK Success. An X.509 certificate encoded in PEM format
(application/x-x509-ca-cert) should be expected in the body.

6.6. Generate a standard QR code

POST {model}/qr-code/unsigned

POST {model}/qr-code/algorithm/{algo name}

23
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

POST {model}/qr-code/passbook/event/algorithm/{algo name}

POST {model}/aztec-code/unsigned

POST {model}/aztec-code/algorithm/{algo name}

POST {model}/aztec-code/passbook/event/algorithm/{algo name}

Response: HTTP status 200 OK, and an image or Apple Passbook file (application/vnd.apple.pkpass).

This endpoint works similarly to the previously explained endpoint (6.3) with a few differences.

The generated QRs have a standard encoding format (see link for more information). This means that

the content of the QR is formed only by the desired data (contextual data and/or biometric vector).

If the url ends with /unsigned the generated QR will only contain the provided data. Otherwise, if the

url ends with /algorithm/<algorithm_name> the content of the QR will be signed (with the specified

algorithm). The supported encryption algorithms are: ed25519 and ed448.

Parameters

The parameters needed for this endpoint are the same as in 6.3 but excluding “prefixData”, which

doesn’t apply in this context.

Responses

The response format is the same as in 6.3.

6.7. Verify a standard QR code

POST /verification/qr-code

POST /verification/qr-code/unsigned

POST /verification/aztec-code

POST /verification/aztec-code/unsigned

Response: 200 OK, and a JSON (application/json) in the body.

This endpoint tries to verify a QR with a standard format. If a selfie is provided and a biometric vector

is found in the QRs content, it will compare them and return a confidence score with the contextual

data extracted from the QR (if any). If no selfie is supplied, it will assume that the QR contains only

contextual data and it will return it as an encoded base64 string.

By default, this endpoint will assume that the QR is signed and it will try to verify its content. If a non

signed QR wants to be verified, “/unsigned” needs to be appended to the path.

Parameters

24
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

https://en.wikipedia.org/wiki/QR_code#Encoding

CONFIDENCIAL

The parameters needed for this endpoint are the same as in 6.4 but excluding “prefixData”, which

doesn’t apply in this context.

Responses

The response format is the same as in 6.4.

7. API Errors

The API defines the following error messages.

Code HTTP Status Description

FaceError 400 das-FaceQR was unable to locate a person's face in
the supplied picture. The attached message should
provide more details of what went wrong.

SignatureError 400 Signature verification failed.

FormatError 400 The supplied binary blob does not follow the
formatting rules expected by das-FaceQR. Most of
the time this would indicate that the supplied data
is malformed in some way. We have observed
some QR reading libraries try to decode the binary
data, which may also cause this error. See section
“A note on reading QR codes”.

InvalidInputError 400 A required parameter is missing, or has an invalid
value.

ContextualDataTooLargeE
rror

413 Submitted contextual data is too large.

InvalidEncoding 400 The supplied qrData has an unexpected encoding
format. This error may occur after sending a QR
code to the Aztec code endpoint and vice-versa.

RequestBodyNotFound 400 The request body is empty.

UnsupportedCodeType 400 The supplied code type (QR, aztec, etc.) is not
supported.

InconsistentQRContent 400 The provided qr-data has inconsistent information.
For instance: the data says that the qr is 100 bytes
long, but it’s not.

UnsupportedModel 400 The provided Model is not supported.

25
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

26
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

Annex A: Supported QR versions and maximum contextual data

lengths

The following two tables show the maximum length of contextual data that can be stored for
each QR code version and redundancy level. All these values have been calculated
supposing a selfie has also been sent, and hence a biometric vector is also stored in the QR
code (which takes up additional space). Those combinations that cannot be used (such as
12 M) because they don’t have enough capacity for just the biometric vector, have been
omitted from the tables.

For ed25519 algorithm

QR version and error correction level Max. length of contextual data (bytes)

12 L 40

13 L 98

13 M 4

14 L 131

14 M 35

15 L 193

15 M 85

16 L 259

16 M 123

17 L 317

17 M 177

18 L 391

18 M 233

19 L 465

19 M 297

20 L 531

21 L 602

27
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

21 M 384

22 L 676

22 M 452

23 L 764

23 M 530

24 L 844

24 M 584

25 L 946

25 M 670

25 Q 388

26 L 1040

26 M 732

26 Q 424

27 L 1138

27 M 798

27 Q 478

28 L 1201

28 M 863

28 Q 541

29 L 1301

29 M 937

29 Q 581

30 L 1405

30 M 1043

30 Q 655

30 H 415

28
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

31 L 1513

31 M 1125

31 Q 703

31 H 463

32 L 1625

32 M 1211

32 Q 785

32 H 515

For ISO/IEC 9796-2 algorithm

QR version and error correction level Max. length of contextual data (bytes)

12 L 47

13 L 105

13 M 11

14 L 138

14 M 42

15 L 200

15 M 92

16 L 266

16 M 130

17 L 324

17 M 184

18 L 398

18 M 240

19 L 472

20 L 538

29
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

21 L 609

21 M 391

22 L 683

22 M 459

23 L 771

23 M 537

24 L 851

24 M 591

25 L 953

25 M 677

25 Q 395

26 L 1047

26 M 739

26 Q 431

27 L 1145

27 M 805

27 Q 485

28 L 1208

28 M 870

28 Q 548

29 L 1308

29 M 944

29 Q 588

30 L 1412

30 M 1050

30 Q 662

30
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

30 H 422

31 L 1520

31 M 1132

31 Q 710

31 H 470

32 L 1632

32 M 1218

32 Q 792

32 H 522

31
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

Annex B. Use case example: Authentication for accessing a concert

Here it is described a complete use case of the das-FaceQR technology in combination with other

Veridas digital authentication products. The example presents a concert ticket sales process and an

authentication process in the event entrance.

Tickets sale

Someone decides to go to a concert. To do that, a ticket has to be bought. The chosen channel to buy

it is the tickets sale webpage so it will be done remotely. During the buying process, certain personal

information is requested to the client, like its name, surnames, etc. as well as its banking information.

Veridas does not take part in any of these processes.

Once these forms are completed and submitted, the tickets sale webpage uses the Veridas

selfie-alive SDK and requests the user to do a selfie photo. This SDK requests the user to do an action

to continue the process, using the action to verify that the person is alive. Currently, the requested

action is to smile.

After the capturing process is completed, the service provider can apply, optionally, the Veridas

anti-spoofing detection services to determine that the captured selfie photo is not a photo of a

screen (not available for web capture technology) and to check that the selfie photo and the smiling

photo corresponds to the same person. This functionality requires the use of the das-Face API.

Finally, the service provided calls the das-FaceQR API with the selfie photo captured by the user.

Moreover, the localization and the concert date are included as contextual data, as well as the access

door and the seat assigned to the user. With this information, das-FaceQR generates a biometric QR.

32
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

The previous image represents an example of version 23 and M redundancy QR, which is adequate

for storing the biometric information and the contextual data associated to the concert.

The user receives an email confirming that the purchase process has ended (the flow related to the

payment process is obvious in the description) and that the ticket is available. The user has two

options, print the entry with the biometric QR or save it in its wallet.

Access to the concert

The concert’s day, the user goes to the place where it takes place.

On the day of the concert, the user goes to the facilities where it takes place. A biometric door is

installed in the access control. This door must contain the following elements.

● A camera for capturing the user image.

● A QR code reader, although they can optionally be read through an image processing

software from the previous camera.

The user approaches the camera and shows his biometric QR to the reader. The displayed QR can be

represented on the paper entry or on the wallet of the user's mobile device. In this way, the

authentication process begins with something that the user is (his face) in combination with

something that the user has (his physical or digital biometric QR).

In any case, the software installed on the door sends the facial image captured with the biometric

door camera and the biometric QR to das-FaceQR to verify that the user has the right to access (it is

obvious at this point if das-FaceQR is installed on-premises or is served from the cloud).

das-FaceQR receives the above information. First, it checks the integrity of the information obtained

by signing the biometric QR, to ensure that there is no alteration on the biometric QR. If the integrity

of the information can be assured, das-FaceQR decrypts the biometric vector. Following this process,

das-FaceQR sends das-Face the registration biometric vector and the recently captured image at the

concert access door. das-Face reads the biometric model version that has to be used for the

biometric comparison and executes the corresponding comparison. Finally, a similarity value and the

contextual data read is returned to the service provider.

33
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

The service provider then executes business logic. For example, it checks the contextual data

information regarding the concert date and the gateway. If they are correct, it goes on to check the

business logic based on the biometrics score. For example, if the comparison score obtained by

das-FaceQR is greater than 90%, it authorizes the user access.

Finally, after the authorization, the access door opens and the user accesses the concert facility.

FAQs

The ticket buyer illegally resells its ticket. Can the illegitimate buyer access the concert?

It cannot access the concert. The biometric comparison between the photo captured at the access

door and the biometric QR would not be satisfactory, obtaining a low similarity score.

The ticket buyer loses his ticket. Can a person who finds it access the concert?

You cannot access the concert. As in the previous case, the biometric comparison between the

photo captured at the access door and the biometric QR would not be satisfactory, obtaining a low

similarity score.

The buyer of the ticket cannot attend the concert and decides to return the ticket or sell it by the

legal means established for this purpose. How can it be articulated?

The service provider should establish an inbound return or delegation process for the ticket. In

other words, a process that allows the already purchased ticket to be authenticated in order to

return it or transfer it to another person. This authentication process would consist on validating

the ownership of the ticket by using a selfie photo and the biometric QR of the entrance, thus

allowing the return of the money or the transfer to another third person. This third person would

carry out a process of generating their biometric QR following the usual process.

The concert is repeated on Friday and Saturday. The user bought the ticket for Friday. Can the

user also access the concert on Saturday?

You cannot access the concert, as long as the service provider establishes a validity date for the

biometric QR and verifies it after reading the contextual data by das-FaceQR

The user gets the wrong access door to the concert facility. Can the user access the facility?

As in the previous case, you cannot access the concert, as long as the service provider sets the

34
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

value of the access door in the contextual data and checks it after reading by das-FaceQR.

The ticket buyer manipulates the data of the seat number in the biometric QR to access a

privileged area. Can the user access the concert?

The user cannot access the concert. The integrity check carried out by das-FaceQR verifies that the

stored data, both the biometric credential and the contextual data have not been modified. This is

done thanks to the signing of the data.

The user makes a fake biometric QR to access the concert. To do this, he uses a biometric

credential that he previously used to travel by train and adds the contextual information

associated with the concert. Can the user access the concert?

The user cannot access the concert. The integrity check carried out by das-FaceQR verifies that the

stored data, both the biometric credential and the contextual data have not been modified. This is

done thanks to the signing of the data. Additionally, the encryption of the biometric vector will be

done with a different key for each client in future versions of das-FaceQR. This implies that

decryption of the biometric vector with the password of the company which organizes the concert

would not be possible, since the biometric vector was originally encrypted with the password of

the railway transport company.

35
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

Annex C: Changelog History

dasFaceQR 2021Q1

2.1. Added and improved

● New endpoints which allow to generate standard QRs and verify them

● Automatic detection New endpoints which allow to generate standard QRs and verify them

●
● Automatic detection of QR encoding (parameter “isDecoded” is no longer needed)New

endpoints which allow to generate standard QRs and verify them

●
● Automatic detection of QR encoding (parameter “isDecoded” is no longer needed)of QR

encoding (parameter “isDecoded” is no longer needed)

dasFaceQR 2020Q4

2.1. Added

● Added support for Aztec Codes.

● New parameter “isDecoded” indicates if the QR code data has been decoded on the client

side or not.

2.2. Fixed

● Some errors that used to return 500 codes now return 400.

dasFaceQR 2020Q2

2.1. Added

● The selfie image is now optional. It’s possible to generate a biometric credential containing

only a vector, only contextual data, or both.

● It’s possible to select which of the three supported algorithms will be used to sign a QR code.

The endpoint has been extended such that the algorithm can be specified:

/credential/qr-code/algorithm/<algo-name>.

● Now additional custom data can be added at the beginning of the QR code. This data will not

be part of the signature.

36
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

CONFIDENCIAL

2.2. Fixed

● Various fixes in the generated Passbook files. Some readers were unable to read them.

● QR length capped below maximum possible size

● Under some circumstances the signature algorithm could not be selected

2.3. Deprecated

● As announced in previous release GET /size-limits endpoint will not be available any longer.

dasFaceQR 2019Q4

2.1. Added

● New endpoint /credential/qr-code/passbook/event to generate Apple

Passbook files.

● Newly-generated QR codes will ship a biometric vector with a reduced BPC (bits per cluster)

of 8, in order to generate smaller QR codes.

● New endpoint /models
● Support for signature algorithm ISO/IEC 9796-2.

37
All rights reserved – This document contains confidential information, property of Veridas Digital Authentication Solutions, S.L., and cannot be
reproduced, copied, or revealed to third parties, without the express written authorization of Veridas. The information of this document must be

kept secret and used in the exclusive benefit of Veridas.

